Guides
Visit our websiteDeveloper Docs
  • Getting Started with Databrain
    • What is Databrain?
  • ❄️Onboarding & Configuration
    • 📝Sign-Up
    • ✍️Sign-In
    • ✏️Google Sign In Setup for Self-hosted app
    • 🤔Forgot password? Recover your Databrain Account
    • 🌟Onboarding
    • 💾Add a Data Source
    • 🧑Configure Tenants
    • 🆕Create a Workspace
    • 🔓Create a Private Workspace
    • 🆕Create a Dashboard
    • 💠Create a Metric
      • Create Custom Columns
      • Create a Metric using Chat Mode
      • Create a Metric using Custom SQL
    • Workspace Settings
      • General Settings
      • Access Control Settings
      • Cache Settings
      • Download Settings
    • 🗄️Explore Data
  • 🛢️Datasources
    • Connecting Data Sources to Databrain
      • Amazon Redshift
      • Snowflake
      • BigQuery
      • MySQL
      • Postgres
      • MongoDB
      • ElasticSearch
      • DataBricks
      • ClickHouse
      • MSSQL
      • Amazon S3
      • CSV
      • Firebolt
      • SingleStore
      • Athena
    • Allow Access to our IP
    • Add a Data Source
    • Configure Tenants
    • How to Sync a Data Source
    • Edit Tenancy
    • Create a Datamart
    • Semantic Layer
    • Create a Data App
    • Creating a Custom Dataset/View in a Multi-Datasource Environment
  • Workspace
    • Multi Datasource Workspace
  • 🔍DASHBOARDS
    • Edit a Dashboard
    • Share Dashboard
    • Dashboard Settings
    • Create/Modify Dashboard Filter
      • Dashboard Filter - Variable Apply On
      • Add LHS and RHS custom sql support for dashboard filter
    • Customize Layout
    • Adding Elements to Dashboard
    • Import/Export Dashboard
    • Report Scheduler
  • 📉METRIC
    • Edit a Metric
    • Joins , Filter, Sort, Group By
    • Complex Filter
    • Apply Metric Filter
      • Metric Filter - Variable
      • Metric Filter - Custom
    • Switch X axis and Switch Y axis
    • Group By
    • Footnote and Long Description
    • Dynamic Property
    • Archive/Unarchive Metric Card
    • Download Metric Card
    • Download Underlying Data
    • Metric Summary
    • Metric Expression for Single Value Card
    • AI Summary
    • Merge Metrics
    • Section Filters
    • View Unpublished Metrics
  • 📊VISUALIZATIONS - ACTIONS & APPEARANCE
    • Chart Actions
      • Chart Click Action
      • Chart Click Action with Metric
      • Card Click Action
      • Drill Down
      • Cross Dashboard Drill Down
    • Chart Appearance
      • Chart-Specific Appearance Options
  • 🛢️PREVIEW OF DASHBOARDS
    • Email Settings for Scheduled Reports
    • Scheduled Reports for End User
  • 🔍FILTERS
    • Dashboard Filter
    • Metric Filter
    • App filter
  • 💡Features
    • Python Editor Console
    • Custom SQL Console
    • Custom SQL Query Guidelines
  • 🏢Integrating Plugin
    • ✳️Get an auth token
    • 🙏Get a guest token
  • 🛃THEMEING & CUSTOMIZATION
    • 🎨Creating a theme
    • 🖼️View the theme in action
    • ⚙️Reset a saved theme
  • 📊Metric Component (upto version v0.11.15)
    • ✨Quick start
  • 🕸️Web Components
    • ✨Quick start
    • ⚛️Framework Specific Guide
  • 🚀Product Changelog
  • 🤳Self Hosted Changelog
Powered by GitBook
On this page
  1. Datasources

Create a Datamart

This guide provides a straightforward process for creating a datamart in Databrain, allowing users to efficiently manage and analyze data.

PreviousEdit TenancyNextSemantic Layer

Last updated 18 hours ago

What is a Datamart?

A datamart is a specialized subset of a data warehouse designed to cater to the analytical needs of a specific department. It allows users to efficiently manage and analyze relevant data by providing a more focused and optimized dataset.

Purpose of Datamart

A datamart solves the problem of managing large and complex datasets by delivering fast query performance and simplified access to data, tailored to the needs of specific departments.

  1. Initial Access:

  • In the "Data Studio" page of Databrain, navigate to the "Datamarts" section.

  • Click on "+ Data Mart" button in the top right corner.

  1. Configure Datamart:

  • Enter a suitable name for your datamart and choose the corresponding datasource from the dropdown list.

  • Check "Enable Database Tenancy" (optional) and click on "Next".

Database tenancy refers to organizing and controlling access to data based on specific groups. It ensures that each group can access only their own data, keeping it secure and separate from other.

  1. Select Tables:

  • Use the search box to find specific tables or browse available tables in the schema.

  • Select required tables and click "Next".

  1. Configure Columns:

  • For each column, you can configure:

    • ALIAS: Create custom names for columns

    • HIDE TO: Set visibility options

    • TRANSFORM: Apply data transformations

  • Then, click "Next".

  1. Configure Tenancy:

  • Set "Tenancy Level" as table or database.

  • If tenancy level is table, then select the table containing customer information from the dropdown list.

  • Choose "Primary Key" for customer identification and select "Customer Name" column.

  • Finally, click "Complete" to finish the datamart creation.

Your new datamart will appear in the Data Marts list!

For a detailed guide to create the semantic layer for the datamart, kindly refer the following link:

🛢️
Semantic Layer